

A vulnerability assessment of wildland fire impacts to public drinking water in the western and southeastern United States

John S. Iiames, PhD Research Biologist/Geospatial Scientist/US EPA North Carolina State University

¹Megan Mehaffey, ²David Graybill, ¹Donald Ebert, ¹Steve LeDuc

- ¹ US EPA, Office of Research and Development, Center for Public Health and Environmental Assessment
- ² ORISE Fellow, US EPA, Office of Research and Development

NC STATE UNIVERSITY

- 2015 Gold King Mine Spill
- Animas River (Tributary to San Juan River)
- 3 million gallons of toxic waste released in one hour

- 2018 416 Fire, Hermosa, CO
- Animas River (Tributary to San Juan River)
- 54,000 Acres burned

- Al+ 50X higher (416 Fire)
- Fe 6X higher (416 Fire)
- Mn 20X higher (416 Fire)
- Hg 3X higher (416 Fire)

Which was worse for water quality: Gold King Mine spill or 416 Fire floods?

() 🕑 💌

Study compared metal loading in both events; results surprised researchers

By Jonathan Romeo Staff reporter Saturday, Nov 3, 2018 5:03

Wildfire impact to receiving water bodies

Background forested condition:

- Subsurface flow dominant
- Overland flow very rare
- Forest acts as filter and sponge

Murphy et al., 2018, *JGR-Biogeosciences*

This slide courtesy of Sheila Murphy, USGS

5

Post-wildfire:

- Decreased interception, infiltration, and storage
- Overland flow
- Water (and entrained sediment, ash, etc) moves quickly to streams

Wildfire impact on formally vegetated and stable legacy mining sites

Mining legacy in the Fourmile Creek watershed (1860s-1940s)

Murphy et al., 2020

This slide courtesy of Sheila Murphy, USGS

Wildfire-Urban Interface areas are increasing...

https://www.fs.fed.us/nrs/pubs/rmap/rmap8/rmap_nrs8-hi.pdf Martinuzzi et al., 2015

Water quality: literature assessment - Duration

LeDuc et al., 2021 (in prep)

Outline

- Introduction A brief narrative...
- Forest ecosystem alterations from fire
- Beyond the Smoke: Effect of wildfire events on drinking water
- Lit Review- Duration, Frequency, Magnitude
- Research Design and Results

Overview:

- The US EPA is evaluating **361** 'lakesheds' in the western and southeastern US
- Lakes chosen for the following criteria:
 - (1) Non-overlapping watersheds (i.e., not nested)
 - (2) Water intakes at minimum 100 m from shoreline
- Lakesheds developed for each water intake (LakeCat)
- Assimilation of lakeshed attributes (e.g., fire- history, probability, intensity; physiographic – aspect, elevation, slope, erosion; climate – precipitation and temperature; fuel loadings – landcover; anthropogenic influences – mining, insect infestation, human use index)
- Hierarchical Sums Modeling Ranking of vulnerable water bodies

Sampling Design – EPA Regions

Ryan A. Hill, et al., 2018

Data Sources:

<u>Physiography</u>:

Landfire Slope, Aspect, Elevation

Climate:

PRISM – Daily/Monthly Temperature and Precipitation

<u>Soils:</u>

gSSURGO (Gridded Soil Survey Geographic) – (e.g., Kffact – soil erodibility factor) Forest-to-Faucets

Wildfire:

Wildfire Hazard Potential (2018) Monitoring Trends in Burn Severity (MTBS) – 1984-2020 Landsat Burned Area Essential Climate Variable (BAECV) – 1984-2015 Insect Infestation Data, Forest Fuel (Landfire, NLCD 2016)

Human Use:

Mining Site Density, Fire Retardant Avoidance Areas National Wall-to-Wall Anthropogenic Land Use Trends (NWALT 2012), National Land Cover Database (NLCD 2016)

Wildland Fire Vulnerability Index Hierarchy

Climate

Fire

Fuel

average difference of monthly precipitation (mm) and maximum temperature (C^o) of long-term monthly normal from 2018-2020

number of days in 2020 exceeding maximum temperature of long-term monthly normal

% south-southwest facing slopes in lakeshed

years since last fire; % burned area over 2019-20;
transmission lines (km); % fire frequency (1984-2020)

% agriculture, % developed (med and low), % forest, %
shrub/scrub, % herbaceous, and % barren; 1-hr fine fuels (tons/acre); % tree mortality from insects

 \rightarrow proportion of transmission lines (km) to land area (km²) (%)

% lakeshed with topography that is high mountains,

% lakeshed with topography that is low mountains,

% lakeshed with topography that is escarpment,

% lakeshed with topography that is irregular plains

Water Quality Vulnerability Index Hierarchy

Wildland Fire Vulnerability Index

Water Quality Vulnerability Index

WF/WQ Vulnerability Index – Ranking factor distributions across all lakesheds – SE and Western United States

Wildland Fire and Water Quality Vulnerability Ranking Index: Western USA States

Next Steps:

Bringing in response variables for retro looks and predictive modeling

- Safe Drinking Water Information System (SDWIS)
- Cyanobacteria Assessment Network (CyAN)

Remote Sensing Integration (Bulgaria):

• Fuel model creation - Bulgaria (IceSat-2, Global Forest Canopy Height (GEDI), Landsat-derived Tree Canopy Cover) - Space Research and Technology Institute, the Bulgarian Academy of Sciences (SRTI-BAS)

Questions/Comments?

Thank You!

iiames.john@epa.gov john.iiames@gmail.com